
Bacon’s Cipher

David W. Agler

November 19, 2023

Bacon’s Biliteral Cipher
Francis Bacon claimed that there are three virtues of ciphers: (1) they are easy
to create and decipher, (2) it is impossible for any third-party to decipher, and
(3) they don’t alert suspicion (Advancement of Learning, Bk II, Sec. 6).

Bacon’s cipher is a two-part cipher. The first part is a subsitution cipher, letters
of plaintext are substituted with letters of ciphertext. The second part is a
steganography cipher: the ciphertext is hidden in a message that doesn’t look
suspicious. The advantage of this approach is that we can hide the ciphertext in
plain sight.

Substitution Cipher
As mentioned, the first part of Bacon’s cipher is a substitution cipher. The
substitution cipher is a cipher that replaces letters of plaintext with letters of
ciphertext. In Bacon’s case, each letter of plaintext is replaced by a group of
five letters (a combination of “a” and “b”).

Letter Code Letter Code
A aaaaa N abbab
B aaaab O abbba
C aaaba P abbbb
D aaabb Q baaaa
E aabaa R baaab
F aabab S baaba
G aabba T baabb
H aabbb U babaa
I abaaa V babab
J abaab W babba
K ababa X babbb
L ababb Y bbaaa
M abbaa Z bbaab

1

To encrypt the message “BACON”, we would replace each letter with its cor-
responding code. That is, replace “B” with aaaab, “A” with aaaaa, “C” with
aaaba, “O” with abbba, and “N” with abbab. The encrypted message would be
aaaabaaaaaaaabaabbbaabbab.

Steganography Cipher
The next step is to employ a steganography cipher. A steganography cipher
is a cipher that hides the ciphertext in a message that doesn’t look suspicious.
Let’s call the text that we use to conceal the ciphertext the concealment text.
For example, we might try to hide the message “Destroy the evidence” in the
seemingly innocuous message “What time do you think breakfast is tomorrow?
I hope they serve pancakes.” In order to add the ciphertext to the concealment
text, we need to find a way to represent the ciphertext using the letters of the
message. One way to do this is to use two different typefaces or variations on
the same typeface (e.g., bold and italic). In our example, we will use uppercase
letters to represent “b” and lowercase letters to represent “a”.

Let’s illustrate this with the unencrypted (plain) concealment text “What time is
breakfast tomorrow?”. To conceal the ciphertext “aaaabaaaaaaaabaabbbaabbab”
in this text, we’ll go character by character through the ciphertext. Whenever
the character is an “a”, we’ll use the lowercase version of the character in the
concealment text. Whenever the character is a “b”, we’ll use the uppercase
version of the character in the concealment text. We’ll ignore spaces.

As our ciphertext “aaaabaaaaaaaabaabbbaabbab” begins with “aaaa”, the first
four letters of our concealment text will all be lowercase but since the fifth letter
is “b”, we’ll make the fifth letter in the concealment text uppercase.

a a a a b a a a
w h a t T i m e

The result then is the following:

• Ciphertext: aaaabaaaaaaaabaabbbaabbab
• Plain concealment text: what tIme is breAkfAST tomorrow?
• Encrypted Concealment text: what tIme is breAkfAST tomorrow?

Now that we have our encrypted concealment text, we can send it to our recipient.
If our recipient knows that the uppercase letters represents “b” and the lowercase
letters represents “a”. They will first identify the uppercase and lowercase letters
in the concealment text. Then they will replace the uppercase letters with “b”
and the lowercase letters with “a”. In using this method, they can decrypt the
concealment ciphertext to “aaaabaaaaaaaabaabbbaabbab”. Finally, they can use
the key to decrypt the ciphertext to “BACON”.

2

Let’s consider a final example of the Bacon cipher. It was only recently noticed
on the tombstone of William and Elizebeth Friedman in the Arlington National
Cemetery. Innocently enough, their grave contains the epigraph “Knowledge is
Power”. However, some of the characters were in serif and some were in sans-serif.
Let’s represent this by capitalizing the serif characters and leaving the sans-serif
characters lowercase: “KnOwledGe Is pOwEr”. If we replace the uppercase
letters with “b” and the lowercase letters with “a”, we get the ciphertext “babaa
aabab aabab a”. Decoding this text gives us “UFF”. However, let’s try to decode
it using not the table considered earlier, but with the alphabet that Bacon used
in his The Advancement of Learning (1605).

Figure 1: From The Advancement of Learning

In this alphabet, “I” and “J” share the same encoding, as do “U” and “V”. Using
this alphabet, “KnOwledGe Is pOwEr” is decoded as “babaa|aabab|aabab|a”,
which is decoded as “WFF”, which are the initials of William F. Friedman”.

Python Implementation
Here is a messy Python script that takes a plaintext message, turns it into A/B
ciphertext, and then uses steganography to hide the ciphertext in a concealment
text.

First, we will create a dictionary that maps each letter to its corresponding code.

3

bacon_key = {"A": "aaaaa", "B": "aaaab", "C": "aaaba", "D": "aaabb",
"E": "aabaa", "F": "aabab", "G": "aabba", "H": "aabbb",
"I": "abaaa", "J": "abaab", "K": "ababa", "L": "ababb",
"M": "abbaa", "N": "abbab", "O": "abbba", "P": "abbbb",
"Q": "baaaa", "R": "baaab", "S": "baaba", "T": "baabb",
"U": "babaa", "V": "babab", "W": "babba", "X": "babbb",
"Y": "bbaaa", "Z": "bbaab"}

Next, we will make use of a function to encrypt our plaintext. The function
works by iterating through each character in the plaintext. If the character is
a space, we will skip it. If the character is in our key, we will replace it with
its corresponding code. If the character is not in our key, we will leave it as is.
Thus, if there are any numbers or special characters in our plaintext, they will
be left as is.

Encrypt plain text as a string of a's and b's using bacon_key.
Returns ciphertext.
def ab_encrypt(plain_text):

ciphertext = ""
for char in plain_text:

if char == " ":
continue # skip spaces

if char.isalpha():
char = char.upper()
ciphertext += bacon_key[char]

else:
ciphertext += char

return ciphertext

Next, we will implement the steganography to conceal the cipher text. To do
this, let’s create another function that takes the ciphertext and the concealment
text as arguments. The function will iterate through each character in the
concealment text. If the character is not an alpha, we’ll add it to an empty
string we’ll call encrypted_ct. In contrast, if the character is an alpha, we’ll
check to see if we have reached the end of the ciphertext. If we have not reached
the end of the ciphertext, we’ll check to see if the character is an “a” or a “b”. If
the character is an “a”, we’ll use the lowercase version of the character in the
concealment text. If the character is a “b”, we’ll use the uppercase version of
the character in the concealment text. Finally, if there are any characters left in
the concealment text, we leave them as is in the concealment text.

def make_unsus(ciphertext, concealment_text):
encrypted_ct = ""
cip_index = 0
for char in concealment_text:

if not char.isalpha():
encrypted_ct += char
continue

4

elif cip_index < len(ciphertext):
if ciphertext[cip_index] == "a":

encrypted_ct += char.lower()
elif ciphertext[cip_index] == "b":

encrypted_ct += char.upper()
else:

encrypted_ct += char
cip_index += 1

else:
encrypted_ct += char

return encrypted_ct

We can test our functions by encrypting a message and then hiding it in a
concealment text.

plaintext = "The strike is tomorrow."
concealment_text = '''Dear John. I hope this letter finds you well.
Tomorrow is the first day of spring so I'm thinking of going for a
walk in the park or going for a bike ride.'''
ciphertext = ab_encrypt(plaintext)
encrypted_ct = make_unsus(ciphertext, concealment_text)
print(f"Plaintext message: {plaintext}")
print(f"Encryption in ciphertext: {ciphertext}")
print(f"Encryption using steganography: {encrypted_ct}")

Here is the result (I’ve added breaks and spaces to make it easier to read in
LATEX):

• Plaintext message: The strike is tomorrow.
• Encryption in ciphertext: baabbaabbbaabaabaababaabbbaaababaaaa

babaaabaaabaaabaababaabbabbb aabbaaabbbabaaabbaaababbbababba.
• Encryption using steganography: DeaR JohN. I HopE thIs lEtTer FINds

yOu Well. tOmOrroW is tHe fiRst DaY of SPrING so I’M thiNKInG of
gOIng fOr A WAlK iN The park or going for a bike ride.

Bacon decryption
Let’s turn to decryption. There probably is a simpler way to do this that
leverages the process of encryption, but I ended up writing the function from
scratch. The function works by first converting the encrypted concealment text
to a cipher. It checks if the text is alpha, and if it is, then it checks if it is
uppercase (if it is, then “b”) or lowercase (if it is, then “a”).

def bacon_decrypt(encrypted_ct):
def ct_to_cipher(encrypted_ct):

ciphertext = ""
for i in encrypted_ct:

5

if i.isalpha():
if i.islower():

ciphertext += "a"
elif i.isupper():

ciphertext += "b"
else:

continue
return ciphertext

ciphertext = ct_to_cipher(encrypted_ct)
print(ciphertext)

At this point, we have the ciphertext. Now we need to convert it back to plaintext
using the Bacon key to map the ciphertext to plaintext. To do this, I simply
swapped the keys and values in our key: the values become the keys and the
keys become the values. Then I created two variables. One is plaintext to
store the plaintext. Now I don’t want to loop over each item in the ciphertext,
but rather I want to loop over each group of five letters. So I created a variable
group to store each group of five letters. I then looped over each letter in the
ciphertext. If the letter is alpha, I added it to the group. If the group is five
letters long, I added the corresponding plaintext letter to the plaintext variable
and then reset the group variable to an empty string. If the letter is not alpha, I
continued to the next letter. Finally, I returned the plaintext. This can’t be the
right way to do this, but it does work.

def cipher_to_plain(ciphertext):
swapped_key = {v: k for k, v in bacon_key.items()}
plaintext = ""
group = ""
for i in ciphertext:

if i.isalpha():
group += i
if len(group) == 5:

plaintext += swapped_key[group]
group = ""

else:
continue

return plaintext
plaintext = cipher_to_plain(ciphertext)
return plaintext

print(f'The plaintext: {bacon_decrypt(encrypted_ct)}')

Resources
1. The Bacon Cipher Explained by Cryptography for Everybody
2. PDF of Bacon’s On The Advancement of Learning
3. CrypTool2
4. Article about the Friedman Tombstone

6

https://www.youtube.com/watch?v=SXOoICf2DgU
https://www.biodiversitylibrary.org/page/26975906#page/384/mode/1up
https://www.cryptool.org/en/ct2/
https://elonka.com/friedman/FriedmanTombstone.pdf

5. Any communication in and out of jail is closely scrutinized — so inmates
turn to ingenious codes to convey secret messages. Business Insider, 2018.

6. Archived Page of FBI on Analysis of Criminal Codes and Ciphers. FBI,
2000.

7. Hidden Messages and Code Words: Bill Alldritt’s Letters as a Prisoner in
First World War Germany. By Robert Alldritt. Active History, 2016.

Code Used
Bacon's Biliteral Cipher

bacon_key = {"A": "aaaaa", "B": "aaaab", "C": "aaaba",
"D": "aaabb", "E": "aabaa", "F": "aabab", "G": "aabba",
"H": "aabbb", "I": "abaaa", "J": "abaab", "K": "ababa",
"L": "ababb", "M": "abbaa", "N": "abbab", "O": "abbba",
"P": "abbbb", "Q": "baaaa", "R": "baaab", "S": "baaba",
"T": "baabb", "U": "babaa", "V": "babab", "W": "babba",
"X": "babbb", "Y": "bbaaa", "Z": "bbaab"}

Encrypt plaintext
def ab_encrypt(plain_text):

ciphertext = ""
for char in plain_text:

if char == " ":
continue # skip spaces

if char.isalpha():
char = char.upper()
ciphertext += bacon_key[char]

else:
ciphertext += char

return ciphertext

Steganography

def make_unsus(ciphertext, concealment_text):
encrypted_ct = ""
cip_index = 0
for char in concealment_text:

if not char.isalpha():
encrypted_ct += char
continue

elif cip_index < len(ciphertext):
if ciphertext[cip_index] == "a":

encrypted_ct += char.lower()
elif ciphertext[cip_index] == "b":

encrypted_ct += char.upper()

7

https://www.businessinsider.com/code-jail-secret-messages-2018-3?op=1#in-a-telephone-keypad-cipher-letters-of-the-alphabet-are-used-to-represent-numbers-as-they-appear-on-a-common-telephone-keypad-3
https://www.businessinsider.com/code-jail-secret-messages-2018-3?op=1#in-a-telephone-keypad-cipher-letters-of-the-alphabet-are-used-to-represent-numbers-as-they-appear-on-a-common-telephone-keypad-3
https://archives.fbi.gov/archives/about-us/lab/forensic-science-communications/fsc/jan2000/olson.htm#drug%20codes
https://activehistory.ca/blog/2016/01/05/hidden-messages-and-code-words-bill-alldritts-letters-as-a-prisoner-in-first-world-war-germany/#_ftn3
https://activehistory.ca/blog/2016/01/05/hidden-messages-and-code-words-bill-alldritts-letters-as-a-prisoner-in-first-world-war-germany/#_ftn3

else:
encrypted_ct += char

cip_index += 1
else:

encrypted_ct += char
return encrypted_ct

plaintext = "The strike is tomorrow."
concealment_text = '''Dear John. I hope this letter finds you well.
Tomorrow is the first day of spring so I'm thinking of going for a
walk in the park or going for a bike ride.'''
ciphertext = ab_encrypt(plaintext)
encrypted_ct = make_unsus(ciphertext, concealment_text)

print(f"Plaintext message: {plaintext}")
print(f"Encryption in ciphertext: {ciphertext}")
print(f"Encryption using steganography: {encrypted_ct}")

Bacon decryption
def bacon_decrypt(encrypted_ct):

def ct_to_cipher(encrypted_ct):
ciphertext = ""
for i in encrypted_ct:

if i.isalpha():
if i.islower():

ciphertext += "a"
elif i.isupper():

ciphertext += "b"
else:

continue
return ciphertext

ciphertext = ct_to_cipher(encrypted_ct)
print(ciphertext)

def cipher_to_plain(ciphertext):
swapped_key = {v: k for k, v in bacon_key.items()}
plaintext = ""
group = ""
for i in ciphertext:

if i.isalpha():
group += i
if len(group) == 5:

plaintext += swapped_key[group]
group = ""

else:
continue

8

return plaintext
plaintext = cipher_to_plain(ciphertext)
return plaintext

print(f'The plaintext: {bacon_decrypt(encrypted_ct)}')

9

	Bacon’s Biliteral Cipher
	Substitution Cipher
	Steganography Cipher
	Python Implementation
	Bacon decryption
	Resources
	Code Used

