
Caesar Cipher

David W. Agler

November 23, 2023

Caesar Cipher
The Caesar cipher is a method of encryption. It works by taking a message
(plaintext) and substituting (in a specific way) each letter in the plaintext with
another letter in the alphabet (ciphertext). The method of substitution is such
that each letter in the alphabet of the plaintext is moved (or “shifted”) a number
of places left or right in the alphabet. For example, we might take the plaintext
“AID”, shift the alphabet to the right 3 places, and then replace each letter in
“AID” with a letter 3 places to the right in the alphabet. So, “A” would be
replaced with “D”, the letter “I” would be replaced with the letter “L”, and
the letter “D” would be replaced with the letter “G”. The result would be the
ciphertext “DLG”.

Plaintext A I D
Ciphertext D L G

The number of positions down the alphabet that we shift each letter is called the
“shift” or “key”. So, in the example above, the shift is 3. The shift can be any
number from 1 to 25. For the plaintext “ABC” and a shift of 1, then the letter
“A” would be replaced by the letter “B”, the letter “B” would be replaced by the
letter “C”. And, at the end of the alphabet, the letter “X” would be replaced by
the letter “Y”, the letter “Y” would be replaced by the letter “Z”, and the letter
“Z” would be replaced by the letter “A”.

Plaintext A B C . X Y Z
Ciphertext (shift 1) B C D . Y Z Z

The shift can be any number, other than 0 or the size of the alphabet. A shift
of 0 is not shift at all. If the alphabet of the plaintext is 26, then a shift of 26 is
also not a shift at all since the cipher text would be the same as the plain text.

1

Strengths and Weaknesses of the Caesar Cipher Agler - 2

Strengths and Weaknesses of the Caesar Cipher
One strength of the Caesar cipher is that it is very easy to understand and use.
In addition, those unfamiliar with the basics of cryptography will not know how
to decrypt the message. As such, it provides a very minimal level of security
from friends with no knowledge of encryption or children.

There are many weaknesses of the Caesar cipher. First, it is one of the most
well-known ciphers and so anyone with any knowledge of ciphers will recognize
it. Second, it is very easy to break. There are only 25 possible shifts, so one
way to break the code is by brute force. Namely, one can simply try all possible
shifts. For example, suppose we have the cipher text “ITT LWOA IZM PIXXG.”
We can decrypt this message by considering all 25 possible shifts:

• Key 0: ITT LWOA IZM PIXXG.
• Key 1: HSS KVNZ HYL OHWWF.
• Key 2: GRR JUMY GXK NGVVE.
• Key 3: FQQ ITLX FWJ MFUUD.
• Key 4: EPP HSKW EVI LETTC.
• Key 5: DOO GRJV DUH KDSSB.
• Key 6: CNN FQIU CTG JCRRA.
• Key 7: BMM EPHT BSF IBQQZ.
• Key 8: ALL DOGS ARE HAPPY.
• Key 9: ZKK CNFR ZQD GZOOX.
• Key 10: YJJ BMEQ YPC FYNNW.
• Key 11: XII ALDP XOB EXMMV.
• Key 12: WHH ZKCO WNA DWLLU.
• Key 13: VGG YJBN VMZ CVKKT.
• Key 14: UFF XIAM ULY BUJJS.
• Key 15: TEE WHZL TKX ATIIR.
• Key 16: SDD VGYK SJW ZSHHQ.
• Key 17: RCC UFXJ RIV YRGGP.
• Key 18: QBB TEWI QHU XQFFO.
• Key 19: PAA SDVH PGT WPEEN.
• Key 20: OZZ RCUG OFS VODDM.
• Key 21: NYY QBTF NER UNCCL.
• Key 22: MXX PASE MDQ TMBBK.
• Key 23: LWW OZRD LCP SLAAJ.
• Key 24: KVV NYQC KBO RKZZI.
• Key 25: JUU MXPB JAN QJYYH.

Notice that the only key that produces a message that makes sense is key #8.
So, we can conclude that the shift is 8 and the plain text is “ALL DOGS ARE
HAPPY.”

Third, the Caesar cipher cannot be

Python Implementation Agler - 3

Python Implementation
In this section, we consider a Python implementation of the Caesar cipher. We
will first create a function that takes a string, a key (the shift) and returns the
encrypted string. This is our caesar_encrypt function. Next, we will create a
function that does the opposite. Namely, it takes a string, a key (the shift), and
returns the decrypted string (plaintext). This is our caesar_decrypt function.
Finally, we’ll look at how to “hack” or “crack” or “break” the Caesar cipher. We
will first create a function that takes a string and returns a list of all possible
shifts and the encrypted string for each shift.

Caesar Cipher Encryption

Let’s begin by considering how to encrypt a plaintext message using the Caesar
cipher. We’ll start simple by creating a long string that contains the symbols of
our alphabet. The function takes a string and a key (the shift) and returns the
encrypted string.

SYMBOLS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

Next, we’ll create a function that takes two arguments and return one value.
First, it should take our plaintext string. Second, it should take a key (the
shift). Third, it should returns the encrypted string. We’ll call this function
caesar_encrypt. Let’s setup the function, specify that it takes two arguments
plaintext and key, declare a variable ciphertext and have the function return
the ciphertext.

def caesar_encrypt(plaintext, key):
ciphertext = ""
return ciphertext

At this point, if we call our function, it will only return the empty string. What
we want to do is loop through each character in plaintext, check its position in
the SYMBOLS, let’s define this as the pos and then add the key (shift) number to
the pos. The result will give us the corresponding char in the SYMBOLS. To do
this, we’ll use a for loop over the plaintext, check to see whether the character
is an alphabet character (for English: A-Z, upper or lower case). If it is, we’ll
define a variable pos that is equal to the position of the character in the SYMBOLS
string. Since the character may be lower case, we’ll convert it to upper case
using the upper() method. We’ll then return the ciphertext.

SYMBOLS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

def caesar_encrypt(plaintext, key):
ciphertext = ""
for char in plaintext:

if char.isalpha():
pos = SYMBOLS.find(char.upper())

Python Implementation Agler - 4

pos = pos + key
return ciphertext

Our function still will return a blank string, but now that we have the index of
our new char, we only need to get that char from the SYMBOLS string and add
it to the ciphertext.

SYMBOLS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

def caesar_encrypt(plaintext, key):
ciphertext = ""
for char in plaintext:

if char.isalpha():
pos = SYMBOLS.find(char.upper())
pos = pos + key

ciphertext = ciphertext + SYMBOLS[pos]
return ciphertext

The above function works except in the case where the key is greater than the
length of the SYMBOLS string. So, for example, if our ciphertext is “Z” and
our key is 1. There is no character at position 26 in the SYMBOLS string (the
last index is 25). So, we need to check for this case and “wrap around” to the
beginning of the SYMBOLS string. How can we fix this? Well, suppose that our
ciphertext is Z (index 25) and our key was 1, when we make pos = pos +
key, the new char is at index 26 rather than 0. We could make it 0 by simply
subtracting the length of SYMBOLS (which is 26). So, 25 + 1 = 26 - 26 = 0.
Similarly, if our key was 2, then 25 + 2 = 27 - 26 = 1. And, of course, if our pos
is not greater than the length of SYMBOLS, then we don’t need to do anything.
With the above in mind, we can add the corresponding letter to our ciphertext.

if pos >= len(SYMBOLS): #overflow when we add the key
pos = pos - len(SYMBOLS) # 26 + 1 = 27; 27 - 26 = 1

else:
ciphertext = ciphertext + SYMBOLS[pos]

Finally, we need to add the else statement if we get any characters that are not
alphabetic. In this case, we simply add the character to the ciphertext. Here
is the final function:

SYMBOLS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

def caesar_encrypt(plaintext, key):
ciphertext = ""
for char in plaintext:

if char.isalpha():
pos = SYMBOLS.find(char.upper())
pos = pos + key # add the key val
if pos >= len(SYMBOLS): #for wrap around

pos = pos - len(SYMBOLS)

Python Implementation Agler - 5

ciphertext = ciphertext + SYMBOLS[pos]
else:

ciphertext = ciphertext + char
return ciphertext

Let’s test our function:

print(caesar_encrypt("ABC", 2)) # CDE
print(caesar_encrypt("ABC", 26)) # ABC
print(caesar_encrypt("XYZ", 1)) # YZA

With this basic Caesar encryption function in place, let’s consider how to decrypt
a message.

Caesar Cipher Decryption

The process of decrypting a message encrypted using the Caesar cipher is nearly
identical to the process of encrypting a message. The only difference is that we
subtract the key rather than add it. So, we can simply copy our caesar_encrypt
function and change the line pos = pos + key to pos = pos - key. We’ll call
this function caesar_decrypt (notice that some of the variable names have been
changed).

def caesar_decrypt(ciphertext, key):
plaintext = ""
for char in ciphertext:

if char.isalpha():
pos = SYMBOLS.find(char.upper())
pos = pos - key # add the key val
if pos >= len(SYMBOLS): #for wrap around

pos = pos - len(SYMBOLS)
plaintext = plaintext + SYMBOLS[pos]

else:
plaintext = plaintext + char

return plaintext

Alternatively, we can simply pass in a negative key to our caesar_encrypt
function. But, wait, suppose there is an “A” in our ciphertext and our negative
key is -2. The plaintext then would be Y. An index of -2 is precisely what we
want since a negative index counts from the end of the SYMBOLS string.

x1 = caesar_encrypt("ABC", 2) # CDE
x2 = caesar_encrypt("ABC", 26) # ABC
x3 = caesar_encrypt("XYZ", 1) #YZA
print(x1, x2, x3)
y1 = caesar_encrypt(x1, -5) # ABC
y2 = caesar_encrypt(x2, -26) # ABC
y3 = caesar_encrypt(x3, -1) # XYZ
print(y1, y2, y3)

Python Implementation Agler - 6

Caesar Cipher Hacking

The Caesar cipher is very easy to hack. As mentioned, there are only 25 possible
shifts, so one way to break the code is by brute force. A brute force method
involves trying every possible combination. For example, suppose we have
the cipher text “ITT LWOA IZM PIXXG.” We can decrypt this message by
considering all 25 possible shifts. Let’s create a function that takes a string
encrypted_message and returns a dictionary of all possible (1) keys (shifts)
and (2) possible decryptions . We’ll call this function bf_caesar_hack (“bf” for
brute force).

SYMBOLS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

def bf_caesar_hack(encrypted_message):
return decrypted_messages

We’ll start by putting our encrypted message in uppercase. Then, we’ll create
an empty dictionary decrypted_messages. We’ll construct the dictionary so its
keys are its keys (the shifts) and the values of those keys are potential decrypted
messages. Next, we’ll loop through each key (0 to 25) and decrypt the message
using our caesar_decrypt function. We’ll call this message pos_decryption
as it is a possible decryption. Finally, we’ll construct the dictionary where the
key is the key (shift) and the value is the pos_decryption. We’ll return the
dictionary.

def bf_caesar_hack(encrypted_message):
encrypted_message = encrypted_message.upper()
decrypted_messages = {}
for key in range(0, len(SYMBOLS)):

pos_decryption = caesar_decrypt(encrypted_message, key)
decrypted_messages[key] = pos_decryption

return decrypted_messages

Let’s test our function. First, we started this section with the following ciphertext
“ITT LWOA IZM PIXXG.” To crack this code, we simply call our function and
pass in the ciphertext.

SYMBOLS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

def caesar_decrypt(ciphertext, key):
plaintext = ""
for char in ciphertext:

if char.isalpha():
pos = SYMBOLS.find(char.upper())
pos = pos - key # add the key val
if pos >= len(SYMBOLS): #for wrap around

pos = pos - len(SYMBOLS)
plaintext = plaintext + SYMBOLS[pos]

Python Implementation Agler - 7

else:
plaintext = plaintext + char

return plaintext

def bf_caesar_hack(encrypted_message):
encrypted_message = encrypted_message.upper()
decrypted_messages = {}
for key in range(0, len(SYMBOLS)):

pos_decryption = caesar_decrypt(encrypted_message, key)
decrypted_messages[key] = pos_decryption

return decrypted_messages

print(bf_caesar_hack("ITT LWOA IZM PIXXG"))

Here are our results:

• Key 0: ITT LWOA IZM PIXXG
• Key 1: HSS KVNZ HYL OHWWF
• Key 2: GRR JUMY GXK NGVVE
• Key 3: FQQ ITLX FWJ MFUUD
• Key 4: EPP HSKW EVI LETTC
• Key 5: DOO GRJV DUH KDSSB
• Key 6: CNN FQIU CTG JCRRA
• Key 7: BMM EPHT BSF IBQQZ
• Key 8: ALL DOGS ARE HAPPY
• Key 9: ZKK CNFR ZQD GZOOX
• Key 10: YJJ BMEQ YPC FYNNW
• Key 11: XII ALDP XOB EXMMV
• Key 12: WHH ZKCO WNA DWLLU
• Key 13: VGG YJBN VMZ CVKKT
• Key 14: UFF XIAM ULY BUJJS
• Key 15: TEE WHZL TKX ATIIR
• Key 16: SDD VGYK SJW ZSHHQ
• Key 17: RCC UFXJ RIV YRGGP
• Key 18: QBB TEWI QHU XQFFO
• Key 19: PAA SDVH PGT WPEEN
• Key 20: OZZ RCUG OFS VODDM
• Key 21: NYY QBTF NER UNCCL
• Key 22: MXX PASE MDQ TMBBK
• Key 23: LWW OZRD LCP SLAAJ
• Key 24: KVV NYQC KBO RKZZI
• Key 25: JUU MXPB JAN QJYYH

Notice that the only key that produces a message that makes sense is key #8.
So, we can conclude that the shift is 8 and the plaintext is “ALL DOGS ARE
HAPPY.”

Code Agler - 8

Code
Caesar Cipher Encryption, Decryption, and Brute Force Hack

SYMBOLS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

Encryption with Caesar cipher
def caesar_encrypt(plaintext, key):

ciphertext = ""
for char in plaintext:

if char.isalpha():
pos = SYMBOLS.find(char.upper())
pos = pos + key # add the key val
if pos >= len(SYMBOLS): #for wrap around

pos = pos - len(SYMBOLS)
ciphertext = ciphertext + SYMBOLS[pos]

else:
ciphertext = ciphertext + char

return ciphertext

Decryption of Caesar ciphertext with key
def caesar_decrypt(ciphertext, key):

plaintext = ""
for char in ciphertext:

if char.isalpha():
pos = SYMBOLS.find(char.upper())
pos = pos - key # add the key val
if pos >= len(SYMBOLS): #for wrap around

pos = pos - len(SYMBOLS)
plaintext = plaintext + SYMBOLS[pos]

else:
plaintext = plaintext + char

return plaintext

Brute Force Hack of Caesar cipher

def bf_caesar_hack(encrypted_message):
encrypted_message = encrypted_message.upper()
decrypted_messages = {}
for key in range(0, len(SYMBOLS)):

pos_decryption = caesar_decrypt(encrypted_message, key)
decrypted_messages[key] = pos_decryption

return decrypted_messages

Test 1 - ABC
plaintext1 = "ABC"

Code Agler - 9

ciphertext1 = caesar_encrypt(plaintext1, 2)
print(ciphertext1) # CDE
plaintext1 = caesar_decrypt(ciphertext1, 2)
print(plaintext1) # ABC

Test 2 - Hello World
plaintext2 = "Hello World"
ciphertext2 = caesar_encrypt(plaintext2, 4)
print(ciphertext2) # LIPPS ASVPH
plaintext2 = caesar_decrypt(ciphertext2, 4)
print(plaintext2) # HELLO WORLD

Test 3 - All dogs are happy.
plaintext3 = "All dogs are happy."
ciphertext3 = caesar_encrypt(plaintext3, 7)
print(ciphertext3) # HSS KVNZ HYL OHWWF.
plaintext3 = caesar_decrypt(ciphertext3, 7)
print(plaintext3) # ALL DOGS ARE HAPPY.

Test 4 - Brute Force Hack of "ITT LWOA IZM PIXXG"
print(bf_caesar_hack("ITT LWOA IZM PIXXG"))

	Caesar Cipher
	Strengths and Weaknesses of the Caesar Cipher
	Python Implementation
	Caesar Cipher Encryption
	Caesar Cipher Decryption
	Caesar Cipher Hacking

	Code

